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Abstract: This work is a novel trial to integrate geostatistics with fuzzy logic under the geographic
information system (GIS) environment to model soil pollution. Soil samples from seventy-one soil
profiles in the northern Nile Delta, Egypt, and were analyzed for total concentrations of Cd, Co, Cu,
Pb, Ni, and Zn. Metal distribution maps were generated using ordinary kriging methods. They
were normalized by linear and non-linear fuzzy membership functions (FMFs) and overlain by fuzzy
operators (And, OR, Sum, Product, and Gamma). The final maps were validated using the area under
the curve (AUC) of the receiver operating characteristic (ROC). The best-fitted semivariogram models
were Gaussian for Cd, Pb, and Ni, circular for Co and Zn, and exponential for Cu. The ROC and AUC
analysis revealed that the non-linear FMFs were more effective than the linear functions for modeling
soil pollution. Overall, the highest AUC value (0.866; very good accuracy) resulted from applying
the fuzzy Sum overly to the non-linearly normalized layers, implying the superiority of this model
for decision-making in the studied area. Accordingly, 92% of the investigated soils were severely
polluted. Our study would increase insight into soil metal pollution on a regional scale, especially in
arid regions.

Keywords: fluvisols; soil pollution; toxic metals; geostatistics; fuzzy logic; GIS modeling

1. Introduction

Soil is a non-renewable resource that supports life on Earth by providing about 95%
of global food production and offering other services like biomass production, securing
natural resources, and maintaining biodiversity [1]. Yet, rapid urbanization and intensive
industrial and agricultural activities accelerate degradation processes that diminish soil
functions and ecosystem services [2]. Soil pollution is a chemical deterioration linked
to the spread, accumulation, and negative biological or toxic effects of a substance on
soils [3]. Potentially toxic metals (PTMs) are serious pollutants due to their fatal effects,
bioaccumulation, and non-biodegradability [4]. Metals: Cu, Zu, and Ni play crucial roles in
regulating the activity of several enzymes [5], while Co sustains the symbiotic N2 fixation
and manufacture of ethylene in legumes [6]. Other metals (Cd, Cr, and Pb) do not have
positive roles and are highly toxic [7].

Excess of PTMs causes abiotic stress for soil biota via inhibiting enzyme activities,
competition with essential cations, and generating oxidative stress [7]. Thus, the plant
life cycle from seed germination to maturity stage is adversely affected, leading finally
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to reducing crop yield and quality [8]. However, numerous food, feed, and forage crops,
known as hyperaccumulators, have a strong resistance to metal stress and can uptake
excess PTMs and translocate them in their aerial parts [5,9]. Therefore, metals accumulated
in soils can be enriched in animals and human organs through the food chain, leading
to severe health risks [10]. The PTMs may also percolate into groundwater aquifers and
deteriorate the groundwater quality [11,12]. Hence, a precise assessment of soil pollution
based on PTMs is crucial to develop a proper remediation strategy and alleviate negative
impacts [13].

The initial procedure for improved assessment of soil pollution is analyzing the spatial
distribution of PTM content [14]. This analysis highlights hotspots of polluted areas
and provides a key step in risk control [15]. Hence, the geographic information system
(GIS) has been employed to map the spatial variability of PTMs in many soils around the
world [16–18]. Geostatistical methods have been applied, including empirical Bayesian
kriging in California, USA [19] and China [20], and kriging/cokriging in the UK [21] and
Ireland [22]. Geostatistics provides a powerful tool to represent the spatial heterogeneity of
soil attributes [22]. Therefore, it is frequently applied to estimate PTM concentrations at
unsampled points from scattered measurements [20–22].

Kriging is a powerful geostatistical technique to analyze the spatial distribution of
soil attributes and integrate data into raster maps through spatial interpolation [21,23,24].
Basically, it revolves around variograms and related parameters (nugget, sill, and range)
to figure the spatial structure of soil variables [21,23]. Ordinary kriging (OK) is a basal
application of this technique and provides an optimal and unbiased prediction [22]. OK
simulates spatial variability via diverse variograms that can minimize the variance of
prediction errors and offer various map outputs [25]. OK models have been applied to map
PTMs in northern Tunisia [26], the Loess Plateau, China [27], south-central Turkey [28], and
Upper Egypt [14]. Hence, modeling soil metal pollution using ordinary kriging maps is a
promising approach.

Recently, mathematics-based models have been adopted to assess soil metal pollution.
Herein, risk degrees are derived from the extent of deviation from reference values [4,13].
The uncertainty of this approach has been a big debate owing to the inconsistency of
toxicity, various reference and ranking criteria, and subjectivity of simple and supervised
classifications [13,29]. The GIS-fuzzy logic can handle these issues to develop more accurate
classifiers and limits between categories [24]. Instead of the absolute membership in
classical methods, the fuzzy membership functions (FMFs) precisely define the sensitivity
of each pixel with a gradual scale from zero (no membership) to one (full membership). This
decreases the vagueness and eliminates the error of uneven spacing of attributes [30,31].
The fuzzy overlay operators integrate normalized maps in diverging ways, offering more
flexible combinations [32,33]. Hence, spatial models based on GIS-fuzzy logic improve
insight into objective and precise monitoring of metal severity and associated risks.

In this context, GIS-fuzzy models have been adopted in previous works for marine
sediment quality in China [34], surface water deterioration in Iran [30], and groundwater
suitability in Bangladesh [35]. Unfortunately, such a robust approach has seldom been
implemented in soil pollution studies, advocating an urgent need to test its performance in
soil ecosystems. Thus, the present work is a trial toward a novel assessment of soil pollution
by integrating geostatistics with fuzzy logic in the GIS platform. This relies mainly on
(1) generating kriged maps for Cd, Co, Cu, Pb, Ni, and Zn, (2) normalizing these layers
using FMFs, and (3) applying fuzzy overlay operators to generate overall pollution maps.
The procedures are then applied in an area (the north Nile Delta, Egypt, in this case) typical
for arid agro-ecosystems for the upcoming evaluations and environment protection in
similar regions.
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2. Materials and Methods
2.1. Study Area

The studied area lies in the northern Nile Delta of Egypt and covers 4319.26 km2

in UTM zone 36 (latitude: 30◦59′39.864′′ to 31◦36′33.116′′ N; longitude: 30◦20′23.622′′ to
31◦41′25.043′′ E) (Figure 1). The elevation height ranges from 0 to 163 m above sea level and
the slope gradient varies from 0 to 66%. The study area considerably supports food security
as it includes a total cultivated area of 285,207 ha, providing major contributions to domestic
production of food crops, i.e., rice, maize, and wheat. The area also provides a great portion
of total fish production, where catch fisheries (marine, brackish, and freshwater) and
aquaculture industries are mainly concentrated. The area is a heavily populated region,
housing nearly 10 million inhabitants.
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Figure 1. Location maps of the study area.

The climate is dominated by Mediterranean conditions with hot and arid summer and
mild rains in winter. The mean annual temperature ranges from 14 to 25 ◦C, implying that
the soil temperature regime varies from “thermic” to “hyperthermic” and the soil moisture
regime is “torric” [36]. The total annual rainfall (R) varies from 56 to 227 mm, most of
which occurs during the winter season. The potential evapotranspiration (PET) ranges
between 2.9 and 5.5 mm per year. Hence, the aridity index (R/PET) varies from 0.05 to 0.16,
indicating an arid climate as suggested by Prăvălie et al. [37].
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The geological map of Egypt [38] reveals that the area is covered by sedimentary
sequences of the Quaternary era (Figure 2). The Nile silt deposits (late Pleistocene-Holocene)
dominate the majority of the area (67.95%). The Holocene deposits cover 13.33% of the total
area and involve sand dunes (8.58%), stabilized sand dunes (4.61%), and sabkha (0.14%).
Undifferentiated Quaternary formations dominate 4.26% of the total area, while water
bodies occupy the remaining 18.12%.
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Figure 2. Geological map and soil profile locations.

The land use/land cover map (Figure S1) reveals four classes, i.e., water bodies,
vegetation, urban areas, and barren land. The vegetation includes both natural halophytes
(herbaceous plants and shrubs) in and around Burullus Lake, and crop lands, which cover
the major area. The crop pattern is dominated by annual crops, covering nearly 99% of the
cultivated lands [39]. Field crops occupy the major portion, where wheat and clover are the
dominant winter crops, while rice and maize are commonly cultivated during the summer.
Small areas are also cultivated by vegetable crops and fruit trees.

2.2. Field Work and Laboratory Analysis

Seventy-one geo-referenced soil profiles were randomly distributed across the area
(manually) to represent different geological formations (Figure 2). The soil profiles were
dug to a 150 cm depth or to permanent groundwater tables and the general features
of each profile were delineated based on the Food and Agriculture Organization of the
United Nations (FAO) guidelines [40]. Soil samples (211 samples) were gathered from the
subsequent horizons (surface, subsurface, and deep). From each horizon, three replicates of
about 1 kg each were pooled in one composite sample, kept in plastic bags, and transferred
to the laboratory.

All analyses were conducted in an ISO 17025: 2017 certified laboratory of the Central
Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research
Center (NWRC), Egypt. Soil samples were air-dried, ground, and sieved using a 2 mm
mesh. The samples were analyzed for particle size distribution (pipette method), pH (in
1:2.5 soil-water suspension), electrical conductivity (EC) (in soil paste extract), organic
matter (OM), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP)
as set by the U.S. Department of Agriculture, Natural Resources Conservation Service [41].

The total contents of Fe, Mn, Cd, Co, Cu, Pb, Ni, and Zn were extracted according to the
United States Environmental Protection Agency (USEPA) [42]; method 3052: microwave-
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assisted acid digestion using concentrated HNO3, HF, and HCl. The metal (Fe, Mn, Cd, Co,
Cu, Pb, Ni, and Zn) concentrations were measured by Inductively Coupled Plasma Optical
Emission Spectroscopy (ICP-OES—Perkin Elmer Optima 5300, USA). All measurements
were carried out in triplicate.

2.3. Statistical Analysis

Data were statistically analyzed using Microsoft Excel and SPSS 28.0 software (IBM,
USA). The analysis of variance (ANOVA) was performed using one-way ANOVA followed
by Tukey’s honest significant difference (HSD) test at a 1% probability level (p < 0.01) to
compare mean metal concentrations among the three horizons (surface, subsurface, and
deep). The dataset was subjected to normalization by calculating the z-scores. This is
an essential step to deal with environmental data, which usually show abnormal distri-
bution [43]. Thereafter, Pearson’s correlation was performed on the generated z-scores
to examine metal relationships in soils. To identify potential metal sources, the factor
analysis was applied to the correlation matrix using the principal component (PC) method
with Kaiser-Meyer-Olkin measure of sampling adequacy, Bartlett’s test of sphericity, and
Varimax rotation. The PCs with eigenvalues > 1.0 were only considered, and absolute
loading values above 0.75, 0.75–0.5, and 0.49–0.30 were considered strongly, moderately,
and weakly correlated to the PC [44].

2.4. Modeling Soil Metal Pollution

This involved four steps; (1) geostatistical analysis of metal contents; (2) map standard-
ization; (3) developing the overall pollution maps; and (4) validation. All these procedures
were executed using ArcGIS 10.8 software (ESRI, Redlands, USA) as detailed below.

2.4.1. Geostatistical Analysis

The geostatistical analysis was performed using the weighted mean value of metal
contents in the soil profiles. The metal concentration was multiplied by the thickness of soil
horizon and divided by the depth of soil profile. The OK models were applied to generate
distribution maps for the six metals. The OK estimates a soil property at unsampled
locations using the weighted linear combinations of the neighboring observations using
Equation (1) [45]:

Z(x0) =
n

∑
i=1

λi × Z(xi) (1)

where, Z(x0) is the predicted value at un-samples point, n is the number of neighbor points
searched during interpolation, λi is the weighting factor assigned to the measured data
points, and Z(xi) is the measured value.

Initially, data normality was checked using Kolmogorov–Smirnov (K–S) test and
the normal quartile–quartile (Q–Q) plots and histogram were also explored to delineate
distribution outliers. The skewed data were transformed using logarithmic (for Ni) and
Box–Cox (for Co, Cu, Pb, and Zn) methods to reduce the effects of outliers and solve the
non-normality problem [26]. Thereafter, the semivariograms were analyzed to evaluate the
spatial dependency of metal contents. The experimental semivariogram (γ(h)) is calculated
using Equation (2) [45]:

γ(h) =
1

2n(h)

n(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (2)

where n(h) is the number of data pairs within a given lag distance h, Z(xi) is the observed
value at the location xi, and Z(xi + h) is the observed value at a lag of h from the location xi.
The experimental semivariograms are fitted (least squares technique) using several models
to obtain the spatial variation parameters, i.e., nugget (C0), partial sill (C), sill (C0 + C),
and range (a). The nugget is the semivariogram at a lag distance of zero and measures
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short range variability. The sill is the point at which the model flattens out and denotes the
overall sampling variability. The range is the lag distance where the sill is reached [46].

The cross-validation technique was performed to test the reality and efficiency of OK
models by considering prediction errors, i.e., mean error (ME), root mean square error
(RMSE), mean standardized error (MSE), root mean square standardized error (RMSSE),
and average standard error (ASE). The best-fit model was selected based on the lowest ME
and MSE (close to zero), similar values of RMSE and ASE, and RMSSE close to unity [26,47].
The mathematical expressions of these errors are as follows [25]:

ME =
1
n

n

∑
i=1

(Z(yi)− Z(xi)) (3)

MSE =
1
n

n

∑
i=1
|Z(yi)− Z(xi)| (4)

RMSE =

√
1
n

n

∑
i=1

(Z(yi)− Z(xi))2 (5)

SE =

√√√√ 1
n

n

∑
i=1

∣∣∣∣∣
(

Z(yi)−
n

∑
i=1

Z(xi)
n

)∣∣∣∣∣
2

(6)

RMSSE =

√
1
n

n

∑
i=1
|Z(yi)− Z(xi)|2 (7)

where, Z(xi) and Z(yi) are the observed and predicted values, respectively, and n is the
number of sampling points.

2.4.2. Raster Maps Standardization

The GIS-FMFs were applied to convert each cell (pixel) in the kriged layers to a
membership value (S(x)) ranging from 0 to 1. We adopted two normalization methods:
linear and non-linear. The linear-increasing method (Equation(8)) represented the first
method, while the second one was implemented through the large (Equation (9)) and mean-
standard deviation large (MSLarge; Equation (10)) methods. The fuzzy linear establishes
linear relationships between upper (H) and lower (L) limits for a variable (x) that are
inputted by the user as follows [48]:

(x) =


1 if x ≥ H

x−L
H−L if L < x < H

0 if x ≤ L
(8)

In the present work, the L and H values were adopted from Kabata-Pendias [49].
The metal average natural content (ANC) in the Earth’s crust was the L value, while the
maximum allowable metal content (MAC) in agricultural soils was defined as the H value.

The large function is applied when larger input values are more likely to be a member
of the set. This function was used for Co, Cu, Pb, Ni and Zn, where the membership is
derived from spread amounts (t1) and midpoints (t2) set by the user as follows [48].

S(x) =
1

1 +
(

x
t2

)−t1
(9)

In this work, the t1 values were considered as the ANC of metals, while the t2 values
were 5, 10, 0.1, 0.1, and 10 for Co, Cu, Pb, Ni, and Zn, respectively. The performance of
MSLarge function is similar to large functions. Yet, the MSLarge depends on mean (m) and
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standard deviation (d) and their multiplier constants (a and b, respectively) provided by
the user [50]:

S(x) =
{

1− bd
x−am+bd if x > am

S(x) = 0 if otherwise
(10)

This function is preferred when low contents of a metal in soils cause significant
hazards [51]. Hence, it was applied only to Cd as it poses potential risks even in low levels.
The “a” value was set as 0.1 (crustal content), while the default value of b (i.e., 1) was used.

2.4.3. Generating Overall Pollution Maps

The fuzzy overlay analysis was implemented to superimpose the single layers and
develop final pollution maps. The five fuzzy overlay operators, including fuzzy And
(Equation (11)), fuzzy OR (Equation (12)), fuzzy Product (Equation (13)), fuzzy Sum
(Equation (14)), and fuzzy Gamma (Equation (15)) were applied. The gamma operator uses
a parameter γ within the range 0 to 1 set by the users. When γ is 0, the combination is
equivalent to the fuzzy algebraic product and when γ is 1, it becomes equivalent to the
fuzzy algebraic sum. These calculations are expressed as follows [52]:

Fuzzy And value = Min[S(x1), S(x2), S(x3), S(xi)] (11)

Fuzzy OR value = Max[S(x1), S(x2), S(x3), S(xi)] (12)

Fuzzy algebric Product =
n

∏
i=1

S(xi) (13)

Fuzzy algebric Sum = 1−
n

∏
i=1

[1− S(xi)] (14)

Fuzzy Gamma = [Fuzzy Sum]γ × [Fuzzy Product]1−γ (15)

Finally, the generated maps were classified into four grades (slight, moderate, high,
and severe) using Jenks’s natural breaks classifier.

2.4.4. Validation

The prediction accuracy of the overall pollution maps was tested based on the area
under the curve (AUC) of the receiver operating characteristic (ROC), which is frequently
adopted as a powerful validation test in geospatial analysis [31,52,53]. The ROC curve
measures the correlation between the ability of models to predict an event correctly (true
positive rate on the y-axis) against possible cut-off classification probability values (false-
positive rate on the x-axis). The AUC figures how well the models correlate with real
estimations [54]. The Spatial Data Modeller (SDM) integrated with the ArcGIS toolbox
was utilized to calculate AUC-ROC values. The AUC defines prediction accuracy in five
classes [54], i.e., poor (0.5–0.6), average (0.6–0.7), good (0.7–0.8), very good (0.8–0.9), and
excellent (0.9–1.0).

3. Results
3.1. Metal Concentrations in Soils

Descriptive statistics of main soil physicochemical properties are shown in the supple-
mentary data (Tables S1 and S2). Descriptive statistics of metal concentrations in the soils
are presented in Table 1. On average, Co in the whole soil horizons occurred below the
ANC of 10 mg kg−1 [49], while the remaining metals in all horizons were above those limits,
i.e., 0.1, 55, 15, 20, and 70 mg kg−0 for Cd, Cu, Pb, Ni, and Zn, respectively [49]. However,
they stood below the MAC for agricultural soils [49], except Cu (in surface and subsur-
face horizons) and Zn (in topsoil), which surpassed that limit (i.e., 150 and 300 mg kg−1,
respectively). The coefficient of variation (CV) values (%) of >100, 100–10, and <10 are
indicative of high, moderate, and weak variability, respectively [44]. Compared with these
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limits, moderate metal heterogeneity is apparent in the studied area. The statistical analysis
indicated significant differences (p < 0.01) in metal concentrations among the three depths
with the highest ones in the surface horizons, and the lowest in the deep horizons.

Table 1. Descriptive statistics of metal concentrations (mg kg−1) in the studied soils.

Horizon Statistic Cd Co Cu Pb Ni Zn

Surface

Min 0.41 1.72 17.03 12.11 16.92 33.75
Max 5.23 9.78 511.60 171.45 83.85 498.70

Mean 2.76 a 5.93 a 311.22 a 104.21 a 46.74 a 320.29 a

SD 1.52 2.11 134.52 36.70 14.33 121.16
CV, % 55.10 35.64 43.22 35.21 30.65 37.83

Subsurface

Min 0.37 1.28 18.54 9.47 16.19 28.13
Max 4.32 5.87 365.41 126.69 70.40 442.53

Mean 1.92 b 3.82 b 202.07 b 75.77 b 34.46 b 229.71 b

SD 1.05 0.98 82.72 29.56 10.96 80.54
CV, % 54.98 25.64 40.94 39.02 31.79 35.06

Deep

Min 0.21 0.12 16.03 4.79 2.89 30.63
Max 4.20 7.15 334.97 129.67 60.44 360.13

Mean 1.23 c 2.64 c 134.29 c 59.11 c 23.42 c 176.96 c

SD 0.95 1.37 87.51 31.30 12.48 88.62
CV, % 77.11 51.95 65.17 52.95 53.31 50.08

ANC 0.1 10 55 15 20 70

MAC 1–5 20–50 60–150 20–300 20–60 100–300

SD, standard deviation; CV, coefficient of variation; ANC, average natural content; MAC, maximum allowable
concentration. Means with different letters in the same column indicate significant difference (p < 0.01).

3.2. Metal Relationships in Soils

Pearson’s correlation matrix for the dataset of all soil samples (n = 211) is shown in
Table 2. Significant (p < 0.05) and highly significant (p < 0.01) correlations occurred between
metal and soil properties. The concentrations of Cd, Cu, Co, and Pb were positively
correlated to soil pH. Moreover, the concentrations of Cd, Cu, Pb, and Zn displayed highly
significant positive correlations with EC, while Co showed a highly significant negative
correlation with EC. The concentrations of all metals were positively correlated with soil
OM content. With the exception of Cd, the metal concentrations were negatively correlated
with sand content but positively correlated with silt content. Moreover, the concentrations
of Co, Ni, and Zn were positively correlated with clay content. The concentrations of Cd,
Co, and Pb were positively correlated with both Fe and Mn. With the exception of Co, the
studied metals showed highly significant positive correlations among each other. On the
other hand, Co was positively correlated with both Cd and Ni but negatively correlated
with both Cu and Zn.

Results of PCA, given in Table 3, show that the first three PCs had eigenvalues above
1.0, and thus only they were considered in the analysis. They explained 80.66% of the
total data variance, with PC1, PC2, and PC3 representing 35.35, 23.52, and 21.78% of the
total variance, respectively. The PC1 was dominated by five variables with high positive
loadings (>0.75), including OM, Cd, Cu, Pb, and Zn, and three variables with moderate
positive loadings (0.74–0.50), i.e., pH, EC, and Ni. The PC2 involved three variables with
high loadings: clay and silt (positive) and sand (negative), and two variables with moderate
positive (Ni) and negative (pH) loadings. The PC3 included Fe, Mn, and Co with high
positive loadings.
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Table 2. Pearson’s correlation matrix between metals and soil properties (n = 211).

Variable pH EC OM Sand Silt Clay Fe Mn Cd Co Cu Pb Ni Zn

pH 1.000
EC 0.363 ** 1.000
OM 0.340 ** 0.177 * 1.000

Sand 0.417 ** 0.321 ** −0.233
** 1.000

Silt −0.405
**

−0.308
** 0.108 −0.855

** 1.000

Clay −0.342
**

−0.265
** 0.284 ** −0.911

** 0.564 ** 1.000

Fe 0.408 ** 0.395 ** 0.368 ** 0.270 ** −0.238
**

−0.240
** 1.000

Mn 0.410 ** 0.395 ** 0.376 ** 0.274 ** −0.244
**

−0.242
** 0.998 ** 1.000

Cd 0.471 ** 0.431 ** 0.601 ** 0.041 −0.039 −0.035 0.625 ** 0.631 ** 1.000

Co 0.342 ** −0.300
** 0.180 * −0.292

** 0.350 ** 0.185 ** 0.297 ** 0.293 ** 0.319 ** 1.000

Cu 0.210 * 0.234 ** 0.537 ** −0.234
** 0.253 ** 0.146 −0.055 −0.045 0.706 ** −0.187 * 1.000

Pb 0.405 ** 0.234 ** 0.485 ** −0.187
* 0.189 * 0.152 0.190 * 0.189 * 0.668 ** 0.063 0.871 ** 1.000

Ni 0.007 −0.009 0.371 ** −0.274
** 0.296 ** 0.201 ** 0.063 0.067 0.556 ** 0.241 ** 0.738 ** 0.733 ** 1.000

Zn 0.097 0.247 ** 0.454 ** −0.275
** 0.261 ** 0.200 * −0.162 −0.160 0.696 ** −0.234 ** 0.938 ** 0.904 ** 0.760 ** 1.000

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.

Table 3. Varimax rotated component matrix of the studied soil properties.

Parameter
Principle Component Communality

PC1 PC2 PC3

Eigenvalue 4.949 3.293 3.050 —
Variance, % 35.350 23.523 21.784 —

Cumulative, % 35.350 58.872 80.657 —

Variable Eigenvectors
pH 0.696 −0.519 0.113 0.766
EC 0.561 0.187 −0.307 0.444
OM 0.759 0.343 0.303 0.741
Sand −0.243 −0.943 0.049 0.952
Silt 0.186 0.806 0.089 0.692

Clay 0.226 0.813 −0.141 0.731
Fe 0.119 −0.128 0.944 0.922
Mn 0.131 −0.134 0.949 0.937
Cd 0.757 0.232 0.449 0.799
Co −0.247 0.437 0.778 0.856
Cu 0.931 0.106 0.146 0.900
Pb 0.912 0.265 −0.104 0.913
Ni 0.618 0.525 0.264 0.727
Zn 0.931 0.190 0.091 0.912

EC; electrical conductivity; OM, organic matter; Boldface and underline numbers indicate strong loading (absolute
value > 0.75); Boldface numbers indicate moderate loadings (absolute value 0.75–0.5).

3.3. Metal Spatial Variability in Soils

The spatial distribution of the six metals is depicted through semivariograms (Figure S2)
and their parameters in Table 4. The Kolmogorov–Smirnov test indicates that all metals did
not show normal distribution, except Cd. Hence, Box-Cox and log transformations were
applied before performing the interpolation. With lower errors, the Gaussian model was
the best model fitted to the semivariograms of Cd, Pb, and Ni. The circular model was the
best model fitted to the semivariograms of Co and Zn, while the exponential model was the
best-fitted model to represent the Cu semivariogram. The cross-validation of semivariogram
models (Figure S3) demonstrates good correlations between the predicted and measured
concentrations of the six metals. The prediction errors (Table 4) reveal that values of ME and
MSE for all applied models were close to zero, while the RMSSE values were close to unity.
Moreover, the values of RMSE and ASE for each of the selected models were rather similar.
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Table 4. Semivariogram parameters of the best-fitted ordinary kriging models used for predicting
metal concentrations.

Variable Transformation Model
Nugget

C0

Partial
Sill
C1

Sill
C0 + C1

Nugget/
Sill SPD Range,

km
Prediction Error

ME RMSE MSE RMSSE ASE

Cd None Gaussian 0.418 0.604 1.022 0.409 Moderate 41.56 0.001 0.932 0.007 1.263 0.721

Co Box-Cox Circular 0.363 0.462 0.825 0.440 Moderate 29.95 0.000 0.918 0.002 1.213 0.744

Cu Box-Cox Exponential 0.003 0.008 0.011 0.236 Strong 75.69 0.004 0.077 0.040 1.172 0.067

Pb Box-Cox Gaussian 201.770 1064.700 1266.470 0.159 Strong 66.57 0.010 20.300 0.003 1.269 15.838

Ni Log Gaussian 0.022 0.077 0.099 0.227 Strong 61.94 0.007 6.527 0.048 1.390 5.522

Zn Box-Cox Circular 0.002 0.010 0.012 0.145 Strong 44.79 0.004 0.081 0.043 1.300 0.061

SPD, spatial dependence; ME, mean error; RMSE, root mean square error; MSE, mean standardized error; RMSSE;
root mean square standardized error; ASE, average standardized error.

As shown in Table 4, a positive nugget effect (larger than 0), as well as a sill value,
was reached for all the applied OK models. The nugget (C0)/sill (C0 + C) ratio define the
spatial dependency (SPD), where ratios lesser than 0.25, 0.25–0.75, and above 0.75 indicate
a strong, moderate, and weak SPD, respectively [25]. Hence, Cu, Pb, Ni, and Zn had a
strong SPD, while Cd and Co had a moderate SPD. The semi-variogram range values
varied considerably from 30 to 76 km. The range followed the order of Cu > Pb > Ni > Zn >
Cd > Co. The prediction maps of the six metals computed from the semivariogram models
are shown in Figure 3. The concentrations of Cd, Cu, Pb and Zn displayed a similar spatial
pattern delineated by a northern zone with low values. The higher levels of these metals
were mainly visible in the central and western parts and also in some zones in the east for
Cd, Pb and Zn. On the other hand, concentrations of Co and Ni showed a different pattern.
The lowest Co level occurred in eastern and northeastern parts across the studied area,
while the highest level occurred mainly in the western parts besides small pockets in the
south and northern parts. For Ni, the eastern and western parts characterized the lowest
and highest levels, respectively.

3.4. Modeling Soil Pollution

The overall pollution maps produced by overlaying the normalized layers (Figure S4)
are shown in Figure 4. There were various classifications in response to different normal-
izations and overlay techniques. The ROC and AUC analysis, given in Figure 5, illustrates
that pollution maps derived from the non-linearly normalized layers yielded higher AUC
values than those from the linearly normalized ones. This trend occurred under all overlay
operators, except for the fuzzy Product. For overlay operators, maps generated from the
fuzzy Product showed the lowest AUC values, i.e., 0.551 and 0.571 (poor accuracy) when
using the non-linearly and linearly normalized raster layers, respectively. On the other
hand, maps developed by the fuzzy Sum operator displayed the highest AUC values for the
linearly (AUC = 0.729; good accuracy) and non-linearly (AUC = 0.866; very good accuracy)
normalized raster layers.

The highest prediction rates resulted from applying the fuzzy Sum and OR overlay to
the non-linearly normalized raster layers with AUC values of 0.866 and 0.809, respectively,
indicating a very good accuracy. As shown in Figure 4, results of the two models were
highly similar, where the lower pollution levels occurred mainly in the northern parts.
Based on the fuzzy Sum operator, about 92% of the studied soils were considered as
severely polluted, 2% highly polluted, 3% moderately polluted, and 2% slightly polluted
(Table 5). On the other hand, under the fuzzy OR operator, severely, highly, moderately,
and slightly polluted soils occupied about 89%, 2%, 3%, and 5% of the total cultivated
lands, respectively.
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Table 5. Areas of soil pollution classes derived from the most suitable models.

Normalization Operator Class
Area

ha %

Non-linear

Fuzzy Sum

Slight 5219 1.83
Moderate 9868 3.46

High 6702 2.35
Severe 263,417 92.36

Fuzzy OR

Slight 15,629 5.48
Moderate 8539 2.99

High 6156 2.16
Severe 254,882 89.37

4. Discussion
4.1. Metal Concentrations in Soils

Soil metal content reflects the level of severity as the presence of metal toxicants
in soils is not hazardous unless they surpass certain levels. The earth’s natural element
content has been accepted as a reference value to assess potential metal hazards [49,55].
Accordingly, Co in all soils showed a safe level, while the remaining metals would pose
potential risks as reported in an earlier study in the northern Nile Delta [56]. However,
different metal hazards have been reported in other studies in the same region. For instance,
Rinklebe and Shaheen [57] studied distributions of Co, Cu, Ni, and Zn in five soil profiles
developed on fluvial and lacustrine deposits. In all horizons, they found metal content
above the threshold limits, except Cu which was below 55 mg kg−1. Moreover, Abuzaid
and Jahin [58] reported content of Cu and Pb in three depth intervals (0–30, 30–60, and
60–90 cm) within the safe limits, while corresponding values for Cd, Co, Ni, and Zn were
above those limits, except in soils developed on sand deposits. Hence, metal content in all
horizons of the northern Nile Delta soils are likely affected by parent materials, soil type,
and human activities as concluded in previous studies [58–60].

The coefficient of variation (CV) value indicates the degree of discrete distributions
of metal content in soils, and also reflects metal variability in response to natural and
anthropic factors [25,44]. The intermediate metal heterogeneity, as in the current study, is
probably due to similar environmental conditions and cropping systems. Soil developed
on alluvial deposits (from the Nile River) prevail the entire area, except in the northern
parts that are dominated by soils developed on marine and lacustrine deposits. In addition,
rice cultivation is the main land use type in the northern Nile Delta region [61], and thus
cropping systems in the studied area seems to be rather similar.

The significant build-up in metal content in the topsoil demonstrates that all metals
did not show any downward migration. These findings are in line with a previous study
in the northern Nile Delta [56] and a global study in an arid area of northwest China [44].
Generally, the topsoil is more vulnerable to human interference, and thus it can be easily
enriched by metal toxicants [44,62]. Moreover, the vertical movement of PTMs in many
arid and semi-arid regions is significantly governed by physicochemical properties of the
soil profile [58,63]. As shown in Table 1, key soil properties (OM, pH, clay, Fe, and Mn)
tended to decrease with depth, and thus the metal content followed the same trend.

4.2. Metal Relationships in Soils

The correlation results indicate that soil properties played crucial roles in metal accu-
mulation. The pH rise increases the negative charge of soil organic and inorganic colloids,
enhancing soil capacity to hold metal cations by electrostatic sorption [64]. The metal
correlations with EC suggest that Cd, Cu, Pb, and Zn formed soluble complexes with inor-
ganic and organic ligands in soils, while Co and Ni occurred in more stable complexes [65].
The positive metal correlations with OM affirm that organic compounds are significant
reservoirs for metals in soils [62]. Moreover, organic agrochemicals are likely to be the main
source of metal toxicants [66]. The metal correlations with fine-earth reveal that, except
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for Cd, they were related to silt- and clay-sized fractions, implying the strong bound to
phyllosilicate minerals [64,65]. The positive correlations of Cd, Co, and Pb with Fe and
Mn indicate that they might be adsorbed on or co-precipitated with Fe and Mn oxides [65].
The metal interactions among each other reveal similar geochemical behavior or common
source of Cd, Cu, Pb, Ni, and Zn, which differed from Co.

The PCA has been accepted as a powerful tool to identify potential sources of metal
toxicants in agricultural soils [14,56,59]. In our study, three PCs reflecting possible origins
and controlling mechanisms were identified. PC1 could denote the contribution of human
activities, mainly agronomic practices. This could be affirmed by the strong correlations of
OM, Cd, Cu, Pb, and Zn, and the moderate correlation of Ni under this PC. At the same time,
the mean concentrations of these PTMs were far away from their lithogenic contents. These
findings are rather similar to those obtained by Emam and Soliman [59], who reported
anthropic origins for Cd, Cu, Pb, and Zn in soils of the northern Nile Delta region.

PC2 could reflect the contribution of the Nile Delta alluvial sediments since inherent
soil properties (sand, silt, and clay) were strongly correlated to this PC. The strong positive
loadings of clay and silt coupled with the strong negative loading of sand indicate that
the origin of sand was completely different from the source of silt and clay as concluded
by Garzanti et al. [67]. The moderate positive loading of Ni in this PC indicates that the
Nile sediments might also enrich the soils with Ni. Normally, Ni occurs in ultramafic rocks
(serpentine) [49] that dominate the Nile Delta sediments [67].

PC3 could refer to the predominance of ferromagnesian minerals since strong pos-
itive loadings of Fe, Mn, and Co occurred. These findings are consistent with earlier
works [58,59,68], which confirmed the similar source of Fe, Mn, and Co in the northern
Nile Delta soils. Naturally, Co and Mn are found in the ferromagnesian minerals (olivine,
hornblende, and augite) since their respective divalent radii allow them to substitute readily
for Fe (II) and Mg (II). Thus, the greatest content of Mn and Co is mostly found in basic
(basalt) and ultrabasic (serpentine) rocks [69]. Consequently, the Nile sediments, rich in
basalt and serpentine rocks [67], are an important source for these metals in the northern
Nile Delta region.

4.3. Metal Spatial Variability in Soils

The Gaussian, circular, and exponential semivariogram models were accepted to
simulate the spatial structure of the studied metals. Comparing these findings with a
previous study in the Nile Valley of Egypt, Hammam et al. [14] reported that the best-fitted
OK models were stable models for Cd, Co, and Cu, Gaussian model for Pb, and spherical
model for Zn. In an arid area of northwest China, Wang et al. [15] found that the spherical
model was the most suitable to represent the Cu semivariogram, while the Gaussian model
was proper for Pb and Zn. Chiefly, selecting the best-fitted methods depends on the
comparison of cross-validation metrics, i.e., ME, RMSE, MSE, RMSSE, and ASE [24,26].

The applied OK models in the current work could achieve the minimum ME and MSE,
RMSSE near unity, and similar values for each of RMSE and ASE, providing acceptable
estimations for the non-sampled sites [26,47]. The models with ME and MSE close to
zero offer unbiased prediction [24]; meanwhile, those of positive or negative ME values
underestimate or overestimate data variability, respectively [70]. Moreover, the RMSSE
near unity also reveals high prediction accuracy for the applied model [26,47].

The spatial structure of the PTMs could be depicted through the semivariogram param-
eters: nugget effect, sill value, range, and nugget to sill ratio. The nugget and sill express
the random and general variance of the regional variable, respectively, while the range
denotes the extent of spatial autocorrelation [22]. The positive nugget value, as in our work,
stems from the effects of sampling error (limited or dense points), measurement error, and
the presence of data outliers [25]. However, achieving a sill value confirms that data have
a spatial structure and can be simulated via semivariogram models [46]. The nugget/sill
ratio reveals the effects of human and soil factors on the SPD of metals. According to recent
studies [25,26,46], weak SPD is mainly due to extrinsic factors (agronomic practices), while
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strong SPD is due to intrinsic factors (soil properties). Hence, the strong SPD of Cu, Pb, Ni,
and Zn could be attributed to variations of soil parent materials, while the moderate SPD of
Cd and Co could be due to the mutual effects of agricultural practices and soil properties.

The semivariogram range determines the maximum distance of correlation between
sampling points [70], where high range values reflect a large-scale heterogeneity and
vice versa [46]. Over large areas, the higher range value of a soil property denotes a
stronger combined effect of natural and human factors [25]. Thus, the mutual effect of
soil properties and agronomic practices is more apparent for Cu but less important for Co,
which had the largest and lowest semivariogram range values, respectively. According
to Goenster-Jordan et al. [46] and Dad and Ul Shafiq [25], the profound assessment of
spatial heterogeneity entails a sampling distance less than half of the semivariogram range.
Therefore, it is recommended to conduct further investigations in the study area and similar
regions using soil sampling distances of about or even smaller than 21, 15, 38, 33, 31, and
22 km for Cd, Co, Cu, Pb, Ni, and Zn, respectively.

The distribution maps revealed that the lowest metal concentrations were in the
northern parts, where the soils had a light texture (loamy sand to sand). These results
are similar to those obtained by Abuzaid and Jahin [58], who reported that the lowest
concentrations of Cd, Co, Cu, Pb, Ni, and Zn in the northern Nile Delta soils occurred in the
sand sheet unit. Normally, the coarse-textured soils developed on sandstone or sand drift
contain lesser amounts of PTMs compared with fine-textured soils [65,66]. The sandstones
contain the lowest amounts of metals and metalloids [49,71]. In addition, due to the lack of
active adsorption sites, coarse particles are not able to hold or adsorb significant amounts
of metals added to the soils [64,65].

4.4. Modeling Soil Metal Pollution

The overall soil pollution maps reflect the different performances of FMFs (linear
and non-linear) and fuzzy overlay operators (And, OR, Sum, Product, and Gamma).
Generally, linear functions depend on simple calculations, while non-linear functions
use more complicated mathematical algorithms [72]. Hence, non-linear functions can
provide a deeper knowledge of how each indicator affects the soil ecosystem [73]. This
interpretation could explain the superiority of the non-linearly normalized layers over the
linearly normalized ones under different fuzzy overlay operators.

The effects of various fuzzy operators could also be seen since each technique can
portray the interactions of the memberships in significantly different ways [33]. The fuzzy
And as well as fuzzy OR offers an intersection operator, which extracts the minimum and
maximum membership values of the input layers, respectively [32]. Thus, they produce
extreme results as they focus on certain pixels but ignore the remaining cells [31]. However,
the fuzzy OR overlay is preferred when assessing environmental hazards since it delineates
the most serious factors [32,74]. This suggestion could be supported by the higher predic-
tion accuracy for the fuzzy OR operator than the fuzzy And operator under the linear and
non-linear FMFs.

The fuzzy Sum and Product operators consider all pixels of the input layers, overlaying
them in two different manners [32]. The fuzzy algebraic sum is an increasing operator,
where integrating the multiple input layers is more important than any of them alone [33].
Since the overall soil pollution relies on multiple metals, this operator yielded the highest
prediction rates when using either linearly or non-linearly normalized layers. It is unlikely
that the fuzzy algebraic product is a deceasing operator, where combining the multiple
layers is less important than any of them alone [33]. Despite the output map being affected
by all pixels, multiplying the effective factors weakens each other [74], rendering such a
technique more restricted [33]. This could interpret the poor prediction accuracy of this
operator under the two normalization methods.

The fuzzy Gamma operator can simultaneously combine the fuzzy Sum and Prod-
uct operators. Hence, it provides a flexible tool to adjust the increasing and decreasing
tendencies of the two operators [32]. The fuzzy Gamma has been reported as the best
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fuzzy overlay technique for suitability analysis [33,47,48] and wind erosion hazards [31,32].
However, in our work, the fuzzy Gamma overlay had a moderate prediction rate under
the two normalization methods. This could be attributed mainly to the use of different
parameters and membership functions.

Results of the fuzzy Sum overlay were highly similar to those of the fuzzy OR overlay
under the two normalization methods. This might be due to the monotonically increasing
membership of metal layers since an increase in the metal content enhances the occurrence
of soil pollution [4,13]. The very good prediction accuracy obtained from applying the
fuzzy Sum and OR overlay to the non-linearly normalized layers illustrates that both
models were highly suitable to predict soil pollution in the studied area. The high accuracy
is likely due to the deeper analysis of metal contributions to soil pollution achieved by
the non-linear functions [72,73] in addition to the sensitivity of the two operators to the
increasing tendency characterizing metal memberships [32,74]. However, the fuzzy Sum
operator is considered the best model in terms of prediction accuracy (86.6%), which should
be adopted for decision-making in the studied area and similar regions. According to this
model, more than 92% of the investigated soils were severely polluted, posing potential
environmental and health risks. Hence, future remediation studies should be adopted to
suggest proper soil and crop management strategies.

5. Conclusions

In the present work, a novel spatial assessment of soil metal pollution on a regional
scale was adopted in an arid area (north Nile Delta, Egypt). This was achieved through in-
tegrating geostatistics with fuzzy logic techniques under the GIS platform. The OK models
could adequately depict the spatial structure of six PTMs in soils. The best-fitted semivari-
ogram models were Gaussian for Cd, Pb, and Ni, circular for Co and Zn, and exponential
for Cu. Four metals (Cu, Pb, Ni, and Zn) showed a strong SPD, reflecting variations of soil
properties; meanwhile, Cd and Co displayed a moderate SPD, indicating mutual effects
of human and natural factors. The ROC and AUC analysis revealed different prediction
accuracies of the developed soil pollution maps. The non-linear FMFs were superior to the
linear functions for modeling soil metal pollution. Under the two normalization methods,
the fuzzy Sum and fuzzy Product overlay operators resulted in the highest and lowest
prediction accuracy, respectively. Overall, the highest prediction accuracy (AUC = 0.866;
very good) presented when applying the fuzzy Sum overly to the non-linearly normalized
raster layers. This model could accomplish a success rate of 86.6%, implying that it should
be adopted for decision-making in the studied area. According to this model, nearly 92%
of the studied soils were severely polluted, posing potential ecological and health risks.
Hence, great attention should be paid to immediate soil remediation scenarios. Our study
would increase insight into soil metal pollution on a regional scale. Yet, it is advocated
to design proper sampling distances to obtain higher geostatistical precision and efficient
metal mapping in similar regions.
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